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Abstract

Purpose – To provide an analysis of turbulent flow in plane diffusers for graduate and postgraduate
students (researchers) which can help them to understand turbulent flows and turbulence modelling.

Design/methodology/approach – Steady, incompressible, turbulent flow in two-dimensional
plane diffusers, where Reynolds averaged Navier-Stokes (RANS) equations were simplified using the
theory of turbulent boundary layers in integral form adjusted for the internal flow. To close the RANS
equations, the mixing length model proposed by Michel et al., which was previously used for the
calculation of turbulent flow in a straight channel with a uniform cross section, is applied for
the calculation of the turbulent flow in plane diffusers. Also, in this paper, the velocity profile is
approximated in every cross-section of the diffuser by a six-order polynomial, whose coefficients
depend upon the three form parameters. Using this transformation, the system of governing equations
was reduced to the three ordinary differential equations which were solved numerically.

Findings – A comparison between results obtained (velocity profiles) and experimental data obtained
using HWA and LDA shows very good agreement. The method of integral equations of boundary layer
is a relatively old method and tends to be forgotten since more advanced methods have been introduced.
However, the results obtained using this method for the calculation of turbulent flow in a plane diffuser
show a very good agreement with experimental data. Therefore, in engineering applications when
simplicity and low-cpu times are required, the integral method can still be applied successfully.

Originality/value – This paper offers practical help to an individual starting his/her research in the
computational fluid dynamics (turbulence modelling).
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Paper type Research paper

Nomenclature
Cp ¼ pressure recovery

coefficient
Cf ¼ friction coefficient
HWA ¼ Hot Wire Anemometry
LDA ¼ Laser Doppler

Anemometry
l ¼ mixing length

p ¼ pressure
Re ¼ uL=n ¼ Reynolds number
u*ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tvðxÞ=r

p
¼ friction velocity

u þ ¼ dimensionless velocity
um ¼ mean velocity

u0ju
0
i ¼ Reynolds stresses

_V ¼ flow rate
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x ¼ co-ordinate along the
diffuser axis

xs ¼ dimensionless
co-ordinate along the
diffuser axis measured
from the diffuser inlet
to the point of the
separation of the
boundary layer

y, y þ ¼ co-ordinate normal to
the diffuser axis with
an origin at the
diffuser axis and its
dimensionless value

Greek symbols
d, d þ ¼ distance from the

diffuser axis to the
wall of the diffuser
and its dimensionless
value

d0 ¼ distance from the
diffuser axis to the
wall of the diffuser at
the diffuser inlet

d1, d2, d3 ¼ displacement
thickness, momentum
thickness and energy
thickness

h;hþ ¼ hu*=n ¼ co-ordinate normal to
the diffuser axis with
an origin at the wall of
the diffuser, and its
dimensionless value

u ¼ semi-angle of the
diffuser

l, q ¼ form parameters
n ¼ kinematic viscosity
nt ¼ turbulent viscosity
r ¼ density
tw ¼ wall shear stress

Superscripts
0 ¼ derivative with respect

to x

* ¼ symbol used for
friction velocity

þ ¼ dimensionless
quantities

Subscripts
0 ¼ inlet cross section of

diffuser
e ¼ axis of diffuser
m ¼ mean value
s ¼ point of separation of

boundary layer
w ¼ diffuser wall

1. Introduction
A diffuser, as an element where the stream cross section changes from inlet to outlet
has great importance as an adapter for a pipe-line, or in an ejector for changing velocity
and pressure, or in a chimney, etc. The flow structure in the diffuser, whether laminar
(Crnojević 1993) or turbulent has been the theme of many investigations in last
60 years. Up to the 1980s, turbulent shear flow was solved using the theory of a
turbulent boundary layer with mixing length modelling (Johnston, 1998). Later, more
advanced methods such as k-1 (Ganesan et al., 1991) and large-eddy simulation (Gatski
et al., 1996; Ferziger and Perić 2002; Geurts, 2004; Schluter et al., 2005) for computing
turbulent flows have been introduced. Also, direct numerical simulation (DNS), which
gives very detailed information about the flow, has been developed with fast parallel
supercomputers. Unfortunately, DNS is too expensive (in terms of cpu time and
memory required) to be used as a design tool and is limited to low-Reynolds numbers.

The analysis presented in this paper includes: calculations of the velocity profile
from the diffuser inlet to the point of the separation of the boundary layer (the point of
separation of the boundary layer is defined with a zero value of tangential stress on the
wall); defining flow regimes (depending on the geometry and Reynolds number) which
are defined in Kline’s diagram (Fox and Kline, 1962); and calculations of friction and
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pressure recovery coefficients. Experimental data for pressure recovery coefficient was
obtained by Ganesan et al. (1991), while experimental data for the friction coefficient
was obtained by Johnston (1998).

The problem examined in this paper has been analyzed experimentally (using HWA or
LDA) as well as numerically (finite difference, finite element or finite volume method).
However, very rarely is this problem solved by an integral boundary method, as presented
by Johnston (1998). It is well known that integral equations of the boundary layer, as
analysed by Johnston (1998) and used for the computation of the turbulent flow, require an
approximation of the velocity profile. Therefore, several different approaches for the
approximation of the velocity profiles have been proposed. One of these approaches is a
velocity deficit, which is based on the transverse coordinate and the boundary layer
displacement thickness, and is described by an asymptotic seventh-order series (Singh
and Azad, 1995) or by a sine function (Perry and Schofield, 1973). As mentioned earlier, an
approximation of the velocity profile by the six-order polynomial based in the eddy
turbulent viscosity is used in this paper. The final result of the simplifications applied on
the equations presented below gives a system of non-linear simple differential equations,
which is solved by a fourth order Runge-Kutta method.

2. Governing equations
Two-dimensional steady turbulent flow in a diffuser, shown in Figure 1, is described
by Navier-Stokes and continuity equations:

uj›jui ¼ 2
1

r
›ipþ n72ui ð1Þ

›iui ¼ 0 ð2Þ

Velocity decomposition into a sum of its mean and a fluctuation ðu ¼ �uþ u0Þ applied
on the equations (1) and (2) gives Reynolds averaged Navier-Stokes (RANS) equations
and the equation of continuity for mean velocity:

Figure 1.
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�uj›j �ui ¼ 2
1

r
›i �pþ n72 �ui 2 ›ju

0
ju

0
i ð3Þ

›i �ui ¼ 0 ð4Þ

Further, simplification of equation (1) is made using turbulent boundary layer theory
presented in Cebeci and Cousteix (1999). This simplification includes the following
assumptions:

. streamwise gradients are much smaller than cross-stream gradients
ð›=›x ! ›=›yÞ; and

. ð1=rÞð›�p=›yÞ is dominant in the momentum equation in y-direction.

Finally, equations (3) and (4) can be written in common notation:

�u
›�u

›x
þ �y

›�u

›y
¼ 2

1

r

›�p

›x
þ

›

›y
ðnþ ntÞ

›�u

›y

� �
ð5Þ

1

r

›�p

›y
¼ 0 ð6Þ

›�u

›x
þ

› �y

›y
¼ 0 ð7Þ

where nt presents turbulent viscosity (introduced by Boussinesq).
Equations (5), (6) and (7) are applied from the diffuser inlet 0-0, to the cross section

s-s where the boundary layer starts to separate ðtw ¼ 2rnð›�u=›yÞy¼0 ¼ 0Þ. These
equations are solved by satisfying the boundary conditions:

y ¼ 0; �uðx; 0Þ ¼ �ueðxÞ; ›�u=›y ¼ 0; ð8Þ

y ¼ d; �uðx; dÞ ¼ 0; �y ðx; yÞ ¼ 0 ð9Þ

_V ¼ 2

Z d

0

�u dy ¼ const: ð10Þ

0 ¼ �ueu�0e þ
›

›y
ðnþ ntÞ

›�u

›y

� �
d

2n
›2 �u

›y 2

� �
e

ð11Þ

Boundary conditions (8) and (9) define velocity on the diffuser axis and for no-slip
velocity, respectively. The boundary condition (11) was obtained by satisfying the
momentum equation (5) for the diffuser axis (subscript e) and for the channel wall
(subscript d), whereby the condition for turbulent stress on the axis ðrnt›�u=›yÞe ¼ 0
has been employed (Figure 2).

If one applies the classical procedure for transition on integral equations, then
partial differential equations (5), (6) and (7) will take the form:

dd2

dx
þ ð2d2 þ d1Þ

u0�e
�ue

¼
tw

r�u2
e

þ
nd

�u2
e

›2 �u

›y 2

� �
e

ð12Þ
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dd3

dx
þ 3d3

u0�e
�ue

¼ 2

Z d

0

�u

�ue

n

�u2
e

›2 �u

›y2

� �
e

2
›

›y

t

r�u2
e

� �� �
dy ð13Þ

where equation (12) represents the momentum equation and equation (13) represents
the mechanical energy equation, where the total shear stress t is identified as:

t ¼ rðnþ ntÞ
›�u

›y
ð14Þ

where the variable �u0e is the derivative �u0e ¼ d �ue=dx, and d1, d2 and d3 are displacement
thickness, momentum thickness and energy thickness, respectively, defined as:

d1 ¼

Z d

0

1 2
�u

�ue

� �

d2 ¼

Z d

0

�u

�ue
1 2

�u

�ue

� �

d3 ¼

Z d

0

�u

�ue
1 2

�u

�ue

� �2
" #

dy ð15Þ

With the aim of solving equations (12) and (13), the velocity profile is approximated by
the six-order polynomial:

uþðx; yÞ ¼ aðxÞ þ bðxÞyþ2 þ cðxÞyþ4 þ dðxÞyþ6 ð16Þ

To ensure a symmetrical velocity profile, only even power ratios of the polynomial
were used. An analysis of turbulent flow shows that it is useful if one introduces a
coordinate measured positive from the wall h ¼ d-y, friction velocity u*ðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

twðxÞ=r
p

(where tw is shear stress on the wall) and dimensionless variables:

Figure 2.
Dimensionless
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uþ ¼
�u

u*
; yþ ¼

yu*

n
¼ dþ 2 hþ

hþ ¼
hu*

n
; dþ ¼

du*

n

ð17Þ

If one uses the velocity profile (16) and satisfies boundary conditions (8)-(11),
polynomial coefficients will be determined as:

aðxÞ ¼ uþe ð18Þ

bðxÞ ¼
28qþ 5:25 Re 2 0:0333ldþ3

dþ3
ð19Þ

cðxÞ ¼
70q2 52:5 Re þ 0:667ldþ3

dþ5
ð20Þ

dðxÞ ¼
24:67qþ 3:5 Re 2 0:0778ldþ3

dþ7
ð21Þ

where Re ¼ 2d�ue=n is the Reynolds number, and the form parameters are:

lðxÞ ¼
�ue �u

0
en

u*
3 ¼

�u0ed
2

n

uþe
dþ2

; qðxÞ ¼ dþ �uþe ð22Þ

Using formula (22), the relationship between the form parameters is obtained:

q0 ¼
1

dq
ðldþ3 þ q 2d0Þ ð23Þ

The last term in equation (3) is a second order tensor or a matrix in any particular
coordinate system, and represents the average of the products of the fluctuation
velocity components (Durbin and Pettersson Reif, 2001):

u0
ju

0
i ¼

u01u
0
1 u01u

0
2 u01u

0
3

u02u
0
1 u02u

0
2 u02u

0
3

u03u
0
1 u03u

0
2 u03u

0
3

2
6664

3
7775 ð24Þ

Matrix (24) is called the Reynolds stress tensor.
The Navier-Stokes equations have a quadric nonlinearity, and they are unclosed.

To close the Navier-Stokes equations, the mixing length model where nt ¼ l 2d�u=dh,
introduced by Prandtl, is applied. The mixing length l(h) defined by Michel et al.
(Cebeci and Cousteix, 1999) is used:

lðhÞ

d
¼ 0:085 tan h

k

0:085

h

d

� �
ð25Þ

where k ¼ 0.4. For simplicity, the expression (25) is approximated by the fourth-order
polynomial:

l

d
¼ 0:472

h

d
2 0:98

h

d

� �2

þ0:894
h

d

� �3

20:301
h

d

� �4

ð26Þ
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By linearisation, the expression (26) is not reduced to the well-known Prandtl’s
expression for the mixing length: l ¼ ky, but in spite of that, it approximates the
function (25) very well in the whole cross section.

Mathematical manipulation, which included differentiations and integrations (this
mathematical work has been carried out in Mathematica 5), and is dictated by
equations (12) and (13) and the formula (15), produces a system of three simple
differential equations:

dl

dx
¼ f ðx; l; q; dþÞ;

dq

dx
¼ gðx; l; q; dþÞ;

dgþ

dx
¼ hðx; l; q; dþÞ ð27Þ

A prediction that the turbulent velocity profile is fully developed at the diffuser inlet,
where �u0eð0Þ ¼ 0, defines that parametrical form l is found to be zero. However,
experimental results, as in Vujičić (2001) show that the fluid stream adapts before
entering the diffuser inlet and follows the geometry of the diffuser, the outcome of
which is:

lð0Þ – 0 ð28Þ

but which is very close zero. The form parameter q is defined as q ¼ ð�ue=umÞRe =2.
In this expression, the Reynolds number is defined as Re ¼ 2dum/n, while um denotes
mean velocity in the cross section of the diffuser. Using a well-known relation between
velocities, u*=um ¼

ffiffiffiffiffiffiffiffiffiffi
Cf=2

p
where Cf is friction coefficient, the initial condition of the

form parameter q is obtained:

qð0Þ ¼
Re

2
1 þ 3:75

ffiffiffiffiffiffiffiffiffiffi
Cfð0Þ

2

r !
ð29Þ

The third initial condition is determined using definition (17) where the variable d þ is
defined as:

dþð0Þ ¼
Re

2

ffiffiffiffiffiffiffiffiffiffi
Cfð0Þ

2

r
ð30Þ

The initial value of friction coefficient is determined using the Blasisus formula:

Cf ¼
1

4

0:3164ffiffiffiffiffiffi
Re4

p

� �
ð31Þ

The system of differential equations (27) is solved by the Runge-Kutta method of
fourth order. As mentioned earlier, numerical calculations are stopped in the
downstream cross section where the flow starts to separate from the wall of the
diffuser. In this regard, an appropriate computer program has been written in
Fortran 77.

3. Pressure and friction coefficients
In order to have a detailed knowledge of the flow structure in a diffuser, it is necessary
to know both velocity and pressure fields which are defined by the global parameters:
pressure recovery coefficient (Cp), friction factor (Cf) and the local loss of energy.
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These parameters are the subject of interest in engineering applications. Pressure
recovery coefficient is defined as:

CpðxÞ ¼
pðxÞ2 pð0Þ

ru2
mð0Þ=2

¼ 1 2
umðxÞ

umð0Þ

� �
ð32Þ

where subscript m represents the mean value in the cross section. The friction
coefficient is determined using the following expression:

CfðxÞ ¼ 2twðxÞ=ru
2
mðxÞ ð33Þ

where the mean value of velocity in the cross section at the distance x is determined as:

umðxÞ ¼ d21ðxÞ

Z d

0

�uðx; yÞdy ð34Þ

4. Numerical results and discussion
In the order to have concrete numerical results, one has to define the geometry of the
diffuser and the value of the Reynolds number at the diffuser inlet. In this paper,
the geometry of the diffuser is defined as a straight walled slope of half-angle u, and the
cross section change is defined by the linear function:

dðxÞ ¼ d0 þ x · tan u ð35Þ

Figures 3 and 4 show the results of the development of the velocity profile, defined in
relation to the maximal velocity of the inlet cross section, for the value of Reynolds
number Re ¼ 50,000 and half-angles of the diffuser u ¼ 158 (Figure 3) and u ¼ 308
(Figure 4). From these diagrams, the development of the inlet velocity profile to the
velocity profile at the separation point of the boundary layer can be clearly seen.

Figures 3 and 4 show that the velocity profile in the inlet cross section at the axis of
the diffuser deviates from the fully developed one for approximately 5 per cent, which
is a consequence of the inlet boundary condition (28).

After the separation point in the diffuser, a different type of turbulent flow begins,
which cannot be described using the current model. If one compares velocity profiles
for half-angles u ¼ 158 with xs/d0 ¼ 1.445 and u ¼ 308 with xs/d0 ¼ 0.66 using a
constant Reynolds number, then one can see that the position of the separation point
moves nearer to the diffuser inlet as the angle of the diffuser increases.

Figure 5 shows the details of the pressure recovery coefficient distribution along the
length of the diffuser determined by expression (32). From Figure 5, one can see that
the value of the pressure increases along the length of the diffuser and its change is
identified by the pressure recovery coefficient, with more intensity for a diffuser with a
greater angle.

Figure 6 shows a comparison between the results obtained for pressure recovery
coefficient, for a half-angle of the diffuser u ¼ 48 with the results from Ganesan et al.
(1991), in which the problem of turbulent flow in a plane diffuser is solved using both
k-1 and Prandtl’s mixing length model, with uniform distribution in some parts of the
cross section. From this figure, one can see that both models defined by Prandtl’s
mixing length gave similar results, although a difference does exist which is probably
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a consequence of the uniform distribution of mixing length mentioned in the original
reference. Here, as in Ganesan et al. (1991), there exists a difference in values of
pressure recovery coefficient which are obtained in k-1 model and Prandtl’s mixing
length model.

The friction coefficient can be determined using the velocity field obtained with
expressions (34) and (14). Also, it is known that the friction coefficient is highly
dependent on the angle of a diffuser. Therefore, a dependence of friction coefficient on
an angle u for the flow determined by Re ¼ 10,000, is shown in Figure 7. A typical
drop of the friction coefficient from the initial value Cf (0) to the value Cf(xs) ¼ 0 in the
separation cross section is clearly noted, whereby it is obvious that the drop is more
intense in the diffusers with larger angles.

A comparison of results obtained in non dimensional form for a plane diffuser
at Re ¼ 6,000 and u ¼ 58 with the corresponding experimental results presented
in Johnston (1998), is shown in Figure 8. As can be seen, Figure 8 shows very
good agreement between the numerical and experimental results.

The comparison of velocity profiles in the separation cross section between
prediction and experimental data is shown in Figures 9-11.

A comparison between the results obtained using integral equations presented in
this paper and experimental data presented in the work of Stieglmeier et al. (1989) for

Figure 3.
Velocity profiles in a

diffuser at Re ¼ 50,000
and for u ¼ 158;

xs/d0 ¼ 1.445
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the diffuser with a geometry defined by an angle of 288 and flow determined by
Re ¼ 15,600 is shown in Figure 9. Experimental results presented in the work of
Stieglmeier et al. (1989) are obtained using LDA. From Figure 9, an excellent agreement
between numerical results and experimental data can be seen. A further comparison
between numerical results and experimental data presented in the work of Stieglmeier
et al. (1989) includes a diffuser geometry defined by an angle of 368 and same Reynolds
number as in the previous case (Figure 10). An excellent agreement as well as in the
previous case can be shown in Figure 10.

Figure 4.
Velocity profiles in a
diffuser at Re ¼ 50,000
with semi-angle of u ¼ 308

1.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6

y/δ0

u/
u e

0

x/xs=1

x/xs=0.2

x/xs=0

0.7 0.8 0.9 1

1

Figure 5.
Pressure recovery
coefficient in a diffuser at
Re ¼ 25,000 and for
different values of u

0.6

0.5

0.4

0.3

0.2

Cp

0.1

0
0 1 2 3

x/δ0

4 5

Θ=20o

Θ=15o

Θ=10o

Θ=5o

6

HFF
17,5

542



The third comparison shown in Figure 11 includes experimental data from Singh and
Azad (1995). Singh and Azad (1995) used a HWA to measure velocity profiles in a
diffuser described by an angle of 88. Turbulent flow in the diffuser was defined by
Re ¼ 69,000. From Figure 11, very good agreement between numerical results and
experimental data can be seen.

4.1 Point of separation of the boundary layer
Determination of the point of separation of the boundary layer is very important for
optimisation of diffuser geometry. It has been noted that a point of separation of the

Figure 6.
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boundary layer is governed by variations of Reynolds number and different angles of a
diffuser. Therefore, the whole spectrum of different separation regimes of the flow is
obtained, shown in Figure 12 and compared with Kline’s diagram, where n ¼ xs/d0 is
the characteristic parameter.

From Figure 12, it can be seen the most of the calculated flow regimes belong to a
region of transitional flow in Kline’s diagram. Also, from Figure 12, a logical behaviour
of the separation point is noted: for a fixed Reynolds number, the separation is

Figure 8.
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diffuser of u ¼ 58 at
Re ¼ 6,000
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enhanced with the increase of the angle, while for a fixed diffuser angle the separation
is enhanced with the increase of the Reynolds number. According to Johnston (1998),
the optimal region is defined by ds/d0 ¼ 2 up to ds/d0 ¼ 4, and n between 5 and 15. It is
seen that optimal parameters can be achieved for relatively small values of the
Reynolds number and the diffuser angle. As mentioned earlier, the results presented
can be used for the choice of optimal dimensions of plane diffusers in the case in which
no flow separation occurs.

Figure 10.
Velocity profiles in the
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5. Conclusions
The method of integral equations of boundary layer theory, suitably adjusted for the
calculation of turbulent flow in plane diffusers is presented in this paper. The results
obtained contain the development of velocity profiles and changes of pressure recovery
coefficient and friction coefficient from the inlet cross section to the separation cross
section of the diffuser. It is known that these quantities are functions of the Reynolds
number and the diffuser angle, and their changes are more intense for greater angles of
diffusers. From the results presented in this paper, it can be noted that for fixed values
of Reynolds number, the position of the separation cross section is postponed for
smaller diffuser angles. Comparisons between results predicted in this paper and
experimental data obtained by Stieglmeier et al. (1989) and Singh and Azad (1995)
show a very good agreement, and that deviations between them are relatively small.

The method of integral equations of boundary layer is a relatively old method and
tends to be forgotten since more advanced methods have been introduced. However,
the results obtained using this method for the calculation of turbulent flow in a plane
diffuser show a very good agreement with experimental data. Therefore, in
engineering applications when simplicity and low-cpu times are required the integral
method can still be applied successfully. Also, it has been noted that for relatively large
angles of diffuser, the basic hypothesis of boundary layer theory may become invalid.
This is the reason why the proposed method for calculation of turbulent flow in plane
diffusers is not recommended for relatively large angles of diffuser.
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Vujičić, M.R. (2001), “Computation of turbulent flow in plane diffusers”, Master’s thesis,
University of Belgrade, Belgrade.

Corresponding author
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